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Introduction

This five months internship was part of the
second year of master in Computer Sciences at
ENS Lyon. It took place in Claude-Bernard
University, in the LIRIS lab. My supervisor,
Rémy Cazabet, was previously my teacher in
Complex Networks.

This period was troubled by pandemic risks
and confinement measures, which forced every-
one to work remotely. While this is a frustrating
and quite demotivating situation, it went rela-
tively smoothly thanks to good communication
within the team.

The first part of the internship consisted in
assimilating state-of-the-art concepts in net-
work science and community detection. The
conclusions of this bibliography are presented in
section 1.1 that defines the context of static and
dynamic networks based on real-world data;
section 1.2 which presents the how and the why
of communities in networks; and section 1.3, a
selected overview of static and dynamic com-
munity detection algorithms.

In order to understand the interest of link
streams over other types of temporal graphs,
some datasets have been closely observed. Sec-
tion 2 presents these objects of study, with all
the programming tools that were necessarily in-
volved. It also presents bigger datasets that
could be targeted with efficient and scalable al-
gorithms.

Finally, section 3 presents a comparison
framework between algorithms of the literature
and attempts of new methods. Naive network
aggregation is studied in 3.1; a possibility to
transform link streams into static time-graphs
is analysed in 3.2; random walks are used in 3.3
for local detection.

The last section references possible extensions
of the work, as well as some methodological and
practical mistakes that should be avoided in the
future.

1 Context

1.1 Static and dynamic networks

1.1.1 Graphs and networks

Graph theory is a mathematical field that
aims to study a set of vertices connected by
edges. Various properties can be computed,
such as colouring numbers, shortest paths, min-
imal cuts, etc. Graphs are a very abstract and
general concept. When a graph is used to de-
scribe real-world situations, we usually call it a
network, made of nodes and links.

Network science can therefore be seen as an
applied graph theory that works on various data
sources. Questions about international trade,
traffic jam, scientific collaboration, online or
physical social networks, or synaptic connec-
tions in the brain, can be translated to the vo-
cabulary of networks.

Interestingly, real-world networks show prop-
erties that are not expected in the usual random
graph definition: in the Erdős–Rényi model[4],
a fraction of possible edges appear at random,
leading to a bell curve distribution of degrees.
On the contrary, networks from different fields
show "fat tail" distributions that often follow a
power law[3, 25]. This creates a scalle-free be-
haviour, with hubs of arbitrarily high degree[8].

Other studies have highlighted the small-
world property in networks, meaning that the
average length between any nodes is quite small
despite the local structures[6]. This causes net-
works to be resilient to random failure, which
is crucial in the web: though many servers
shut down (because of disconnection or mal-
function), there is always a way to reach anyone
in the network.

Mathematical investigations can use graphs
of any size, from paths in the "Seven Bridges
of Königsberg" to asymptotic behaviour in ran-
dom graphs. However, networks rely on real
data collection. Our collective ability to gather
and organise it makes increasingly massive net-
works available: online social networks can
track millions of users and their billions of in-
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teractions, web crawlers have indexed trillions
of web pages, and the 1014 synaptic connections
of our brain could be mapped entirely over the
next years.

1.1.2 Dynamic representations

Moreover, it is often possible to timestamp
data points, thus adding a temporal dimension.
This information seems necessary to account
for interactions between individuals or anything
linked to the physical world. Studying this shift
from networks to dynamic networks requires a
modification of the mathematical setting, from
graphs to temporal graphs.

Here the notation for a static graph is G =
(V,E), with V a set of n vertices and E a set
of m edges, that may have a weight ω and
a direction. Numerous mathematical objects
have been proposed to deal with dynamic net-
works[39].

The most natural approach is to use N snap-
shots G = (G1, . . . GN), each of them represent-
ing an aggregation of the interactions on a given
time span. Alternatively, an interval graph de-
fines its edges over time intervals. It is useful
to describe long-term relationships that can ap-
pear or disappear, such as "friendships" in on-
line social platforms. However, it does not allow
for a high temporal resolution nor for instanta-
neous interactions such as sending an email.

Therefore, the concept of links streams has
been introduced[43]. As shown in figure 1, it is
a triplet L = (T, V,E), where T is a (discrete
or continuous) set of times, V is a set of ver-
tices, and E is a set of edges. The more general
notion of stream graph allows for nodes to exist
at some specific dates, and for edges to have a
duration, but here we simply consider instanta-
neous interactions: E ⊆ T × V × V .

As opposed to snapshots and interval graphs,
where the network evolves slowly so that each
time step presents a fully consistent network,
a link stream may have only a few links per
time step. Basic concepts such as degree, path
or clustering coefficient had to be redefined[48].

Figure 1: Example of link stream

Yet this fine-grained representation is not nec-
essarily lossless as all link duration is lost. In
discrete time scales, this problem can be tackled
by repeating links when interactions last longer.

1.2 Community detection

1.2.1 Definitions of community

In complex systems involving multiple agents,
the emergence of bigger scale phenomena re-
lies on topological structures of the network.
In real-world systems, individuals tend to form
communities within which they interact prefer-
ably. It is clear intuitively what a community
can be: a group of friends, countries involved
in a free-trade agreement, proteins responsible
for a biological function, web pages of the same
site...

It is much harder however to give a formal
definition of communities[26]. First, it is tempt-
ing to classify nodes in a single community
each to obtain a partition of the network. But
data shows that real communities overlap sig-
nificantly[14], and they have an inner hierarchy,
with some nodes belonging with more strength
than others. Think of a group of friends in
which some people are always keen on meeting
while some barely answer to invitations.

Some definitions are local: they compare the
inner topology of a community to its neighbour-
hood without looking into the whole graph. It is
usually required from a community to be dense:
strictest definitions will only select cliques (a set
of completely interconnected nodes), but they
can be relaxed. Various factors involving node
internal degrees, clustering coefficients, diame-
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ter, etc, can be used. As a dense subset is not
a community if the whole network is dense, this
cohesion is often benchmarked against external
connectivity to compute the quality of a cluster.

Some definitions are global: they compare
the density of a subgraph to an expected den-
sity, inferred from a reference model such as
Erdős–Rényi or configuration. The problem is
that modifications in one area of the network
may affect other areas.

Finally, some definitions gather similar nodes
into community. This homophily[11] can be
based on a distance over node properties (such
as age and geographical location), on the rate of
shared neighbours, on common attractor of ran-
dom walks[44], etc. It is also possible to detect
communities with an intuitive procedure rather
than a mathematical definition.

1.2.2 Quality functions

Mathematical definitions often go with a
quantitative evaluation for the quality of com-
munities. Their aim is to state whether a given
subgraph is a "good" community. Unfortu-
nately, there is no obvious formula and the lit-
erature keep producing new options[45]. Some
metrics of importance are detailed hereafter.

In a graph of n vertices and m edges, let us
consider a community C of c nodes and d edges,
with din internal and dout external edges.

Internal Density = din

(c
2)

is the number of in-

ner edges out of the maximal possible num-
ber, Expansion= dout

c
is the average number of

outgoing edge per node, Out-Degree Fraction=
1
c

∑
u∈C

dout(u)
d(u)

, Significance=probability that C
appears in a random graph. The clustering co-
efficient counts the rate of active triangles in C.
Other metrics such as Permanence, Separabil-
ity, Normalised Cut mix the same variables in
different equations to obtain a fitness value.

All these definitions are intuitively relevant,
but their number is overwhelming; some of them
have been used in many papers and became
standards even though they have some flaws.
In this internship, the following metrics appear

in algorithms comparison.

Conductance represents the proportion of
outgoing edges. It describes the connectivity of
a community by assessing the time required for
a random walk process to reach its stability[10].
The name comes from an analogy with electrical
networks[18].

C(C) =
dout

2din + dout

Surprise compares the internal edge rate

q = din
d

to the maximal rate q̂ =
(c
2)

(n
2)
' c2

n2 . The

asymptotic definition[40] is S = d · D(q || q̂),
where D is the Kullback–Leibler divergence,
used to compare probability distributions.

Modularity[17] compares the density of a
subgraph to its expected density in the configu-
ration model, a random process in which edges
are rewired at random but nodes keep the same
degree. It is an extensive property, which means
that in a partition the network’s modularity is
the sum of communities’ modularity.

Q(C) =
1

2m

∑
u,v∈C

(
1− didj

2m

)
This last metric is the most widely accepted,

and the famous Louvain algorithm aims at opti-
mising it. However, it has major drawbacks that
are well documented as well. First, its maxi-
mum is degenerate[27]: a variety of completely
different partitions give such close modularities
that heuristics cannot distinguish them. This
explains why many procedures output decent
approximations with high structural variability.
Second, modularity compares partitions of any
size to the whole network. This establishes a
resolution limit[19], ie a size depending on n
andm under which no community can be found.
The toy counter-example is a ring of cliques, in
which modularity optimisation tends to merge
cliques together instead of detecting them as
separate objects.

Various patches were proposed such as
modified/Erdős–Rényi/Z/adaptative modular-
ity, modularity density/intensity. In particular,
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it is common to use a resolution parameter to
choose the size of smallest communities, but it
does not solve degeneracy issues.

1.3 Overview of relevant algo-
rithms

1.3.1 On static graphs

Community detection is a quite recent field
of complex networks, but it has yielded a great
variety of algorithms[26, 33]. Due to the several
definitions of community and the multiple qual-
ity functions seen in 1.2, the methods can lead
to very different results. More remarkably, they
leverage various mathematical concepts.

Modularity optimisation consists in merging
or refining communities while trying to improve
the global score Q. The number of distinct par-
titions in a discrete set is given by the Bell num-
ber, which grows faster than exponential: it is
absolutely not possible to optimise it with an
exhaustive search. Heuristics such as simulated
annealing[15], spectral clustering[12], genetic al-
gorithms, etc, are employed. The most widely
used techniques rely on greedy approaches: each
node starts in its own community, and neigh-
bours are progressively regrouped. They create
a dendrogram (a tree that represents the merg-
ing process) from which the partition with high-
est modularity can be retrieved.

The most famous algorithm belongs to this
category: named after the Louvain[23] univer-
sity, it moves each node to the neighbouring
community that would benefit the most from
its presence. After convergence, a new graph
is created in which former communities become
nodes. The process is repeated until all nodes
are in a unique community, and the step with
highest global modularity is returned.

On top of the drawbacks inherent in the
modularity, this algorithm can lead to sparsely
connected or even disconnected communities,
which is really counter intuitive. It happens
when a node bridging to areas of a same com-
munity switches to an other community of its

neighbourhood; the two areas are disconnected
and may never reconnect. The university of
Leiden[53] proposed a slight modification that
allows for community split. They also acceler-
ate the process by queuing up possible switch-
ers, instead of visiting all the nodes every time.

Other techniques use notions of topological
closeness. Following the idea of Pagerank[7],
they use random walks or diffusion to define
communities. Walktrap[16] defines a probabil-
ity Pu,v to reach node v starting from u; nodes of
similar outreach are merged progressively, form-
ing a dendrogram; the step with best modular-
ity (or else) is returned. It uses short random
walks, a few jumps being enough to cover most
of the network (since they usually have small di-
ameters[9]), which leads to low time complexity
and avoids reaching stationary distribution.

Random walks are also used in Infomap[24]

as a preprocess, before applying a Minimum De-
scription Length: nodes are grouped in commu-
nities so that walks can be described on two
levels (inter- and intra-community jumps, like
a separation between cities and street names).
The partition allowing for shortest average de-
scriptions (with a Huffman code[2]) is selected
using greedy search or simulated annealing. An
advantage of MDL procedures is that they re-
quire no parameter[13] and have a clear mathe-
matical definition.

The Label propagation[20] paradigm con-
sists in diffusing each node’s label to its neigh-
bours; nodes then switch to the community
where most of their neighbours belong, until it
converges. Finally, statistical inference is used
in Stochastic Block Models[54], where nodes are
partitioned into a given number of communities
with predefined inner and outer density rates.

1.3.2 On temporal graphs

The previous sections show the abundance
of definitions, algorithms, and evaluations for
static communities. Since there are also several
types of temporal graphs, we can imagine the
plethora of possibilities for dynamic community
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detection[52]1.

Considering snapshots, it is possible to ex-
tend previous algorithms in different ways. One
solution is to run a static algorithm on each
snapshot, then to try and match communities
that have similar nodes at consecutive times. A
simple way[28] is to match communities C1 and
C2 when their Jaccard index exceeds a thresh-
old Θ:

J (C1, C2) =
|C1 ∩ C2|
|C1 ∪ C2|

> Θ

An issue is that the high variability of static
methods will make dynamic partitions quite un-
stable: even if every snapshot contains the same
network, these techniques will find varying com-
munities. This can be avoided to some extent
by core-node based methods[29]: a set of nodes
is distinguished (with centrality or betweenness
criteria for instance) and communities are built
around them in each snapshot. Following core-
nodes allows to define community events such
as merge/split and grow/shrink[21].

An other approach is to turn the degeneracy
problem into an asset: since many local op-
tima have an almost-maximal modularity, au-
thors[35, 41] had the idea to detect static com-
munities in the first snapshot and use them as
starting points in the next one. The complexity
is very low and partitions are smooth in time.

Otherwise, a multi-objective optimisation
can be lead, balancing instantaneous quality
and temporal smoothness[30]. Extensions of
Stochastic Block Models[46, 47] and Label prop-
agation[36] have been proposed for snapshots
and interval graphs, as well as modularity opti-
misation on a time-space graph (snapshots con-
nected by varying edges)[31].

As for link streams, the literature is smaller
because its definition is more recent, and it
is rare to collect data with fine-grained tem-
poral information. Some methods try to de-
tect communities of different scales, either us-
ing a Poisson process alongside Stochastic Block

1Live version of the survey: http://cazabetremy.
fr/rRessources/DCDsurvey.html

Model[49], or a detection of core nodes[55], with
time-space extension and pruning.

With a given time scale, it is also possible to
set a Gaussian weight around each link so that
time-nodes are bound relevantly[42]. Similarly,
each link can become a node connected to other
links with which it shares an extremity at some
time[50]. In both cases, a conventional modu-
larity optimisation is applied on the resulting
graph.

2 Libraries and datasets

2.1 Libraries, modules, software

As I mostly use Python for its simplicity and
clarity, it was possible to choose between two
modules: networkx2 or igraph3. I chose the
first one, which provides simple ways to cre-
ate and import networks. It has many built-in
properties, such as weighted edges, node cen-
trality measures, colouring, shortest paths, min-
imal cut, and even a couple of community de-
tection algorithms.

However for this specific task it was more in-
teresting to use CDlib4, where CD stands for. . .
community detection. It extends networkx by

Figure 2: Link stream sample of the school
dataset using streamfig. Rows are individu-
als and columns are 20s time frames.

2https://networkx.github.io/documentation/
3https://igraph.org/python/doc
4https://cdlib.readthedocs.io
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Figure 3: Two days in a primary school, showing individuals when they interact. Sensors are deacti-
vated out of school and during sports sessions, which explains why some classes completely disappear
in the afternoon; playground breaks during morning and afternoon spans display much denser inter-
actions; lunch break has a specific pattern, with teachers and some students going home.

implementing various data-structures for node
and edge clustering, as well as over 40 detec-
tion algorithms, among which those mentioned
above. The module act as an interface be-
tween Python and external code provided by
researchers. Dozens of fitness functions and par-
tition comparisons are also available. Plus, it is
designed to help researchers and developers run-
ning tests with varying parameters, and it can
display scores and adjacency matrices.

As for nice plots, the software gephi5 is very
useful though not always convenient. Louvain
algorithm is built in and can serve to colour
nodes depending on their community. Edges
and vertices can be styled in accordance to
their properties, and different automatic lay-
outs can be used. In the case of link streams,
the streamfig6 draws lovely plots that help de-
scribing toy examples, like in figure 2.

The library tnetwork7, under construction,

5https://gephi.org
6https://github.com/TiphaineV/streamfig
7https://tnetwork.readthedocs.io

is dedicated to temporal networks. It also re-
lies on networkx and introduces data-structures
for snapshots and interval graphs, as well as
state-of-the-art algorithms for community de-
tection. It provides visualisation tools and
not-yet-published evaluations of dynamic parti-
tions. Moreover, it is able to read Sociopatterns
link stream files directly (see below).

To better understand the different processes
involved in my experiments, I designed a
small additional module tgraph that could be
plugged into tnetwork (in a quite redundant
way). It turns a list of links into a struc-
ture of temporal adjacency lists. Nodes indices
and timestamps are normalised on the inter-
vals [1, n] and [1, T ], the groundtruth (given by
Sociopatterns for instance) is saved, and var-
ious tools make detection algorithms simpler
to write: snapshot between given dates, neigh-
bours of u in a given time window, time-space
graph, uniform random sample of edges...
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2.2 Datasets

2.2.1 Sociopatterns

Sociopatterns8 is a database of a particular
kind, created by complex systems researchers.
In various contexts, they equipped a group of
people with RFID sensors in order to measure
their proximity in real-time. A list of face-to-
face interactions is obtained, with a time reso-
lution of a few seconds. It is interesting to note
that this was specifically designed to study net-
works of interactions, while other datasets are
normally obtained and analysed in retrospect.

One example is a primary school[34], in which
the 230 pupils and 10 teachers had sensors dur-
ing two consecutive days. Figure 3 shows which
individuals interact at which time, with colours
given by the groundtruth. Funnily enough, this
data was the basis for a study about school clo-
sures during epidemics[38].

This dataset was chosen here as the main
benchmark to test algorithms because it is rel-
atively intuitive: we can imagine children inter-
acting by small groups inside their class dur-
ing lessons, and then actively mingling during
breaks. Some studies cut this dataset to analyse
a single day, but it is also interesting to see how
community detection algorithms behave when
they face the long empty gap of night.

Figure 4: Aggregated school graph. Weighted
edges are obtained by counting interactions over
2 days. Colours represent groundtruth cate-
gories.

8http://www.sociopatterns.org/

The data is given in tuples (t, u1, u2, c1, c2),
each meaning that individuals u1 of class c1 in-
teracted with u2 of class c2 in the time span
]t − 20s, t]. The link stream representation is
perfectly suited for that, and a sample is shown
in figure 2. When all interactions between in-
dividuals are merged, we obtain a static graph
figure 4. One question is whether classes could
be detected from the data. It is likely, since the
aggregate seems to cluster pupils of the same
class together, with one teacher (black dot) who
is probably theirs.

The size of the data is 242 nodes, 125’000
links, 3100 active time frames ranging over 32
hours. A tnode is a node at a given time, cor-
responding to an individual interacting for 20
seconds; there are about 175’000 tnodes, which
means that interactions are not always one-to-
one (think of a teacher facing the first raw of
students).

An other interesting dataset was collected
in a hospital[37]. There, people have different
roles such as nurse, doctor or patient, so the
groundtruth does not correspond to highly in-
teractive groups. Yet a homophily-based ap-
proach may be able to recover the roles. While
it is possible to imagine that hubs would be
nurses who come and go between doctors and
patients, it is unclear what communities should
represent; maybe different wings of the hospital,
or medical services.

Other datasets of the same type exist, col-
lected in public exhibitions, rural households,
conferences, workplaces, etc. Some of them in-
clude extra information such as demographics
or friendship assertions.

2.2.2 Synthetic scenarios

On top of the descriptive tools it provides,
the tnetwork library has functions to generate
dynamic graphs following a given scenario. It
takes as input a number of nodes and a number
of communities; the latter can run for a given
time, grow and shrink. They can be followed
through splits and merges thanks to a label, or
even vanish and reappear in a cyclic way.
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Figure 5: Ship of Theseus story represented in
tnetwork: members of a community progres-
sively quit and reconnect separately. Which fi-
nal group corresponds to the original one?

Manual definition of scenarios is useful to cre-
ate simple cases on which we want to test the
behaviour of our algorithms. Moreover, it can
confront them to tricky situations, like the ship
of Theseus and its corresponding philosophical
question: all parts of an object are progressively
replaced by new ones and reassembled some-
where else, which of the two remaining objects
is the original one? The library renders this sit-
uation as shown in figure 5.

Besides, it is possible to generate random sce-
narios, with parameters such as the number
of events, the maximal size of clusters, or the
inter-community edge density. One scenario is
shown in figure 6. Generating several random
instances allows to confront algorithms to vari-
ous unpredictable situations.

2.3 Is this big data?

The datasets presented above range from tens
of nodes to hundreds of thousands of links. If
compared to what a human being can process,
this is huge and very challenging. However, it is
not much for a personal computer: the temporal
graph for school interactions amounts for less
than 3Mb. Machines are able to produce and
to deal with much bigger sets, some of which
can be interpreted as link streams.

Consider a list of emails metadata: sender, re-
cipient, timestamp. All interactions are instan-
taneous, nodes represent email addresses that
can belong to communities, and dates are im-
portant to see how they evolve. Such datasets

can be collected for instance thanks to public
mailing lists[22]. Their potential size is tremen-
dous, as billions of emails are sent every day, by
either people or machines.

Other interesting datasets come from crypto-
currencies: to guarantee the truthfulness of
transactions, some of them store all the record
in a public file that no one can change with-
out collective agreement. The DM2L team
(in which I worked during this internship) has
175Gb of Bitcoin data; parsing this gigantic
file gives access to 150 millions of timestamped
transactions. Users cannot be directly identi-
fied, but a wallet can be tracked to draw a
graph of money flows. In this context, com-
munities may be several address of one user, in-
dividuals paying each other regularly, currency-
management firms, trading platforms, etc.

Online social networks offer countless in-
stances of data that can fit in a stream graph:
messages (similar to emails), reactions on one’s
shared content, co-identification in the same
post... This data is scarcely released by its
owners, yet companies may use it for inter-
nal research. With apps that track people’s
location, it is possible to imagine a big scale
Sociopatterns-like database, where several bil-
lions of people would have their proximity in-
teractions recorded. Privacy implications are a
concern, though it is likely that such data al-
ready exists, even if not in a standardised for-
mat.

Figure 6: Example of random scenario gener-
ated by tnetwork.
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Table 1: Community detection on the aggregated school graph using standard static methods. Col-
umn # is the number of communities discovered; then partitions are compared to groundtruth using
Adjusted Mutual Information. Modularity, Conductance and Surprise describe the fitness of the
partition. Stability is the consistency of results over 10 random iterations. Time of execution is
given for performance comparison.

Table 2: Community detection on the trimmed school graph. Thin edges have been removed because
Infomap and Label propagation implementations were not able to take weights into account. The
graph is sparser which makes all algorithms faster.

3 Experiments

3.1 Static analysis

In this section, we aim at testing famous
static algorithms presented in section 1.3. Us-
ing different quality functions, we run them sev-
eral times on static weighted graphs to measure
their stability. To do so, we need to change the
link stream into a static graph.

Definition. The cumulated graph of a link
stream L = (T, V,E) is a static graph G =
(V, F ), where every link in E adds a unit of
weight on the corresponding edge in F :

F =
{

(u, v) | u, v ∈ V ;∃t ∈ T, (t, u, v) ∈ E
}

∀(u, v) ∈ F, ωu,v =
∣∣∣{t ∈ T | (t, u, v) ∈ E

}∣∣∣
If we consider the Primary School dataset,

the resulting cumulated graph G has 242 nodes
and 8317 edges, while L had 125’773 links.

The cdlib community detection library offers
tens of algorithms for static partitioning found
in the literature. Here we only focus on the most
widely spread ones, described in section 1.3.1:
Louvain and Leiden algorithms, Infomap, Walk-
trap and Label propagation. The groundtruth
is given by Sociopattern: eleven communities,
consisting of ten school-classes and the group
of teachers. They may not be related to edge
density, since for instance teachers will mostly
interact with their students. Yet it would be
interesting if algorithms could infer this infor-
mation from the graph.

To compare results and groundtruth, we use
a mathematical tool called Adjusted Mutual In-
formation (AMI). For two partitions A and B
(sets of communities) in a set of n elements, the
standard Mutual Information is MI(A,B) =
H(A) +H(B)−H(A∩B), with the entropy H
given by:
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H(A) = −
∑
C∈A

|C|
n

log
|C|
n

In the adjusted version, the expectation E of
mutual information between random partitions
is computed.

AMI =
MI(A,B)− E

max(H(A),H(B))− E

Table 1 gives for each method the average
number of communities detected. The parti-
tions are compared to the groundtruth using
AMI. For quality measurement, we compute the
Modularity, Conductance and Surprise. Addi-
tionally, as some procedures are randomised, we
are interested to see their sensitivity to random-
ness: a Stability index is computed by running
10 times the algorithm and comparing the re-
sults using AMI. Finally, the computation time
is measured to compare performances.

Here the problem is that Infomap and Label
propagation do not take weights into account in
this implementation: they see an almost com-
plete graph and are unable to detect any com-
munity structure, leading to a unique commu-
nity. This is a big issue, and one way to go
around it is to trim the graph: we remove edges
when their weight is lower than 10, considering
that rare interactions between children are not
that relevant. Table 2 shows the results.

Note that this version is slightly faster, since
2000 edges are involved instead of 8000. All
the algorithms give decent and quite similar re-
sults, with 85% of groundtruth information re-
covered. Interestingly, we see that they all out-
put a partition with higher modularity than the
groundtruth. This may be due to a resolution
limit (with groundtruth having 11 communities
while the optimal may be 7), yet it also shows
that this quality function is not the "true" an-
swer to community detection, rather one index
among others, with pros and cons. Conduc-
tance as well is much higher in the groundtruth,
meaning that the true groups are not that
strongly separated. In general, groundtruth
does not necessarily match any mathematical

fitness function[51], so we need to be careful
when using them.

3.2 Topochrone analysis

In this section, we transform link streams into
a new type of static graph and discover dynamic
communities using static algorithms. The idea
is to represent time as just another topolog-
ical dimension, like physicists sometimes con-
sider it as a fourth spatial dimension. This con-
cept is often used in the literature for snapshots
(see section 1.3), with names such as time-space
graph, transversal network or time-graph. In
the case of link streams, we introduce the term
topochrone for a graph containing both topolog-
ical and chronological edges.

Definition. Given a link stream L = (T, V,E),
the corresponding topochrone is a static
weighted graph G = (W,Etopo∪Echrono, ω) with:

W =
{

(t, u)
∣∣ ∃v ∈ V, (t, u, v) ∈ E

}
⊆ T × V

Etopo =
{(

(t, u), (t, v)
) ∣∣ (t, u, v) ∈ E

}
Echrono =

{(
(t1, u), (t2, u)

)∣∣ ∃v ∈ V, (t1, u, v) ∈ E;

t2 = min
t>t1
{E ∩ t× u× V 6= ∅}

}
In other words, there is now one so-called

tnode for every moment when a node is inter-
acting. Two tnodes are connected topologically
if their corresponding nodes are interacting at
that time. The weight for these edges is 1. Be-
sides, two tnodes are connected chronologically
if they represent the same node at consecutive

Figure 7: Conversion into a topochrone graph
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Figure 8: Communities detected by Leiden algorithm in the topochrone of the primary school dataset.

moments. We propose 3 different designs for the
weight of this edge: constant, linear decrease or
exponential decrease. We use constants α to
balance the importance of time over topology,
and τ to adjust the time scale.

ωconst
(t,u),(t+δt,u) = α

ωlin
(t,u),(t+δt,u) =

α
δt
τ

+ 1

ωexp
(t,u),(t+δt,u) = α exp−δt

τ

They all satisfy ω = α when δt = 0, but have
different rates of decrease.

Let us take the small link stream of figure 1 as
a toy example. The corresponding topochrone
is in figure 7. Longer chronological edges are
thinner, to show the time decay.

For ` links and x tnodes, we obtain a graph of
x nodes and about `+ x edges. While it is still
possible to run all static algorithms in theory,
we will have to take complexity into account.
Indeed, quadratic procedures work just fine for
200 nodes, but may take ages to treat 200’000
of them. On the other hand, those operating in

quasi-linear time over edges should work quite
fast.

A first attempt with the usual 5 algorithms
showed that Label propagation is not suitable:
it computed communities in 31 minutes, while
Leiden needed 9 seconds. Walktrap was also
eliminated because it took 4 minutes, a bit too
long for experiments.

Figure 8 shows the communities obtained
with Leiden algorithm on the topochrone. We
see consistently that classes are found during
each class-session: 2 in the morning, separated
by a small break, same in the afternoon, and a
long lunch break where communities span over
the whole network. We could not assess the sta-
bility of this algorithm because AMI (that we
used for this purpose) is quadratic in the num-
ber of nodes; here it would require 30 billion
comparisons, which is not worth considering. It
found 122 communities, and does not seem to
suffer too much of the resolution limit (which
would cause classes to be merged into bigger
communities).
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3.3 Randow walks

In this section, we explore random walks as a
way to discover communities in the link stream.
No transformation into a static graph is needed.
Instead, tnodes will be chosen at random as
starting points, and walkers will be sent out.
The walks will follow a path given by temporal
and topological rules, and will heat up tnodes
it encounters.

Our intention, is that the heat map will re-
veal communities: two tnodes are in the same
community if they have many paths in-between.
The random walks are here an approximation
of a probability distribution that would be too
costly to compute exactly.

In part 3.3.1, communities are found inde-
pendently, by comparing the heatmap to the
probability a tnode has to be encountered from
a random starting point. In part 3.3.2, we
launch competitive walkers then tnodes select
their best option.

3.3.1 Independent communities

To detect one community around a tnode, a
number of random walkers will first be launched
from this tnode. They will explore the stream
following some transition rules, and heat up ev-
ery tnode they see (algorithm 1). Once the
heatmap is obtained (algorithm 2), hottest tn-
odes will be tagged as poles (see definition of re-
markability), and new walkers will be sent from
the poles in the next run (algorithm 3). The
successive refinement of the heatmap give what
we call here a community, where each tnode has
a specific rate of belonging. A threshold can
then be applied to decide which ones are indeed
part of the community.

In the first version, many parameters had to
be set by hand:

• η: number of communities to find.

• ρ: number of runs. One run consists in
launching walkers and selecting the poles.

Algorithm 1 RandomWalk
Input: tnode a = (t, u)
Output: Heatmap h
Set heatmap h to zero
for k times do

Draw δt from a Geometric distribution of
mean τ
Heat up t′, u for t < t′ ≤ t+ δt
Jump on new tnode a = (t′, v)

end for

Algorithm 2 HeatMap
Input: poles P , ω walkers
Output: Heat distribution h of length D(h)
Set heatmap h to zero
for ω times do
Pick tnode b ∈ P at random
h = h+RandomWalk(b)

end for
Normalise hb = hb∑

c∈P
hc

for all b

Algorithm 3 Partition using random walks
Input: link stream L, η communities,
depth k, time constant τ , precision π

Output: Overlapping partition A
A is empty
ω = π |T |·|V |

k·τ walkers
h =HeatMap(D all tnodes, ω)
for η times do
Select a random tnode a
Create a set of poles P = {a}
for k times do
h′ =HeatMap(P , ω)
Remarkable poles P = {b | Rb|P > 1}

end for
Add community P to partition A

end for
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• ω: factor to determine the number of walk-
ers sent, for instance ω ∝ √p walkers for p
poles.

• λ, µ: describe the total length of the walk,
and the length of stays before jumping.

• γ: decides the cutoff for heat.

Such a set of parameters makes an algo-
rithm hard to tune, with results that can vary
greatly depending on their choice. Therefore,
we aimed at reducing the number of factors, and
to make them more intuitive so that the tuning
is straightforward.

First, λ and µ are not intuitive because we do
not know what the length of a path should be.
However, we may have an idea of a time con-
stant τ for the data: interactions between peo-
ple last a few minutes, while astronomy observe
events over millennia, and biological processes
happen over milliseconds. Besides, as real-world
networks tend to have a small diameter, some
methods like Walktrap stop the random walk
after a few number of jumps k. We thus rede-
fine our walk: a walker stays on a node during
a time δt (sampled with a geometric distribu-
tion of mean τ) then jumps; after k topological
jumps, the walk stops. Additionally, we fix the
number of runs to k as well, because each run
deepens the community topologically.

An other problem is γ. We would like the
cutoff for heat to depend on the data instead of
an external parameter. Starting from tnode a,
we want to keep tnodes b that have been seen a
lot (high heat hb|a), but especially if they have
been seen more often than with a random start-
ing point (low background heat hb). To measure
the background heat, we add a pre-process in
which many random walks are sent at random
in the stream. Both types of heat can be nor-
malised (over the explored domain) to approxi-
mate probabilities:

pb|a =
hb|a∑

c∈Da

hc|a
and pb =

hb∑
c∈D

hc

A criterion to select b as a good partner of a is
to see if the probability to find b is higher if the

walk starts from a than if it starts anywhere.
We use local mutual information[1, 5]:

MI(a, b) = log
P (a, b)

P (a)P (b)
= log

P (b|a)P (a)

P (a)P (b)

' log
pb|a
pb

As walks starting from a only explore a do-
main of tnodes Da out of the full domain D, it
gives an advantage to all the nodes b visited by
the walk. To avoid taking every tnode in the
community, we confront mutual information to
exploration rate. The cutoff criterion now states
that b becomes a pole if it is remarkable from a:

Definition. The remarkability of tnode b
from tnode a is:

Rb|a =
|Da| · pb|a
|D| · pb

Tnode b is remarkable from a when Rb|a > 1.

Note that the same definition works for a set
C of tnodes (a community) instead of a. It rep-
resents the bonus of b if walkers start at random
in C.

The next parameter to tackle is ω, the num-
ber of walkers. Random walks are a way to
approximate a probability that would be too
costly to compute exactly, so we would like to
have an infinity of walkers. On the other hand,
the program should run as fast as possible. A
decent ω would allow to explore all the stream,
regardless of the number of poles to start from:

ω =
number of tnodes

tnodes seen by one walker
' T · |V |

k · τ

Note that T only counts active frames in prac-
tice, to avoid troubles when many frames are
blank (at night in a school for instance).

The final set of parameters is η, τ, k, and a
precision factor π which only aims at acceler-
ating the computation when needed, sending
ωπ = π · ω walkers.

We tested this algorithm on the school
dataset, but it runs very slowly. The precision
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had to be reduced to π = 20%, and computa-
tion time was still 80 seconds on average. Plus,
by design it finds exactly η = 100 communi-
ties, but many of them overlap greatly, or are
basically the same.

3.3.2 Competitive communities

The main problem of the previous approach
is that we need to define the number of com-
munities η. In this section, we circumvent it by
adding a competition between communities.

The idea comes from ant colony optimisation:
random walkers move according to heat created
by previous walks, or in the analogy, ants follow
pheromone trails laid down by their kin.

Here, the process (described in algorithm 4)
starts with plenty of distinct ant farms, each
with one tnode. Each farm has a couple of
ants (ωπ in total) who explore and lay down
pheromones with the farm’s identity. When ex-
ploration is done, each tnode b makes a deci-
sion: among farms F that make it remarkable
(Rb|F > 1), it joins the one with highest re-
markability.

Note that if a tnode is not remarkable from
any existing farm, it remains without a farm.
Besides, we need to remove farms that are too
small (in term of tnodes); a simple criterion is
that a farm must allow at least one ant to re-
alise a full walk, or in numbers: |F | ≥ τ , where
constant τ has been modified a little and now
represents the time span of a walk, regardless of
the number of jumps k.

On top of tnodes selecting their farm, we tried
to create a system in which ants are "afraid" of
rival pheromones, and either step back or per-
ish when they see too much of it. However,
it was complex both in terms of understand-
ing and computation time, and did not seem to
yield better results.

3.3.3 Computation time

In the last version with competitive ant
farms, the complexity mainly depends on the

Algorithm 4 Partition using ant farms
Input: link stream L, depth k,
walk duration τ , precision π

Output: Non-overlapping farms
Create f = πm

τ
farms of 1 random tnode

for k times do
for ω = π T ·n

τ
times do

Choose F proportionally to |F |
Ant starts at random in F
Ant walks τ frames and k jumps, laying
down F -pheromones

end for
Tnodes choose most remarkable farm
Delete small farms when |F | < τ

end for

input and not on the results. Namely, the com-
plexity is given by:

Complexity ' Rounds× Ants×Walk

One random walk visits an average number of
tnodes given byWalk = τ ·m

T ·n , where T , m and n
are the number of active frames, links and nodes
in the stream. This corresponds to the density
of tnodes per frame multiplied by the number τ
of frames crossed by a walk.

There is one walk for each of the ω ants at
each of the k rounds. As ω = π T ·n

τ
, the overall

complexity reads:

Complexity ' π · k ·m

We acknowledge that this is not a correct
mathematical definition of the complexity, be-
cause it is not clear on which set it is averaged;
therefore asymptotic notations are avoided.

However, it gives an indication about the size
of datasets on which it can be used. We see
that it is linear in m, the number of links in the
stream. Depth k depends on the topology, but
we suggest an integer between 4 and 8, after
network diameter. Precision π indeed reduces
the computation time, yet results may be much
poorer. Finally, τ does not appear, because the
extension of walks is balanced by the eviction
of ants.
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Figure 9: Test panel for communities detected by random walks. Top: heat map over the whole
stream, where black points are the selected poles among visited blue points. Left: heat distribution,
with the cut corresponding to the remarkability threshold. Center: detected community. Right:
number of tnodes for each node.

For an order of magnitude, on the school
dataset, it took on average 12 seconds to pro-
cess the m ' 125′000 links, with depth k = 4
and full precision π = 1. This is comparable to
Leiden algorithm applied on the topochrone (9
seconds). Both were run on my laptop, but Lei-
den is interfaced from C++ while ours is written
in Python.

3.3.4 Tests

In order to see if the communities are coher-
ent, a control panel was designed. For one in-
stance, figure 9 shows heatmap, heat distribu-
tion and tnodes per node. It reveals that com-
munities seem quite noisy: we see a clean rect-
angle, meaning that all pupils of one class have
been selected together during a time interval,
which is good; but there are also some individ-
uals who only appear a couple of times. It is un-

clear why they should belong to the community,
and why not during the whole interval. The
distribution of tnodes per node measures that
problem: we see that some nodes are present
hundreds of times, while the last ones barely
appear. This curve could be used to decide of
a cut at the inflexion point: the 20 first nodes
(which account for most tnodes) would be kept,
while the remaining 10 noisy ones would be re-
moved.

A few tests also reveal a high instability.
With independent random walks, too much im-
portance is given to the initial tnodes, which
are drawn at random; they can lead to redun-
dant highly-overlapping communities, while big
areas of the network are completely forgotten.

In the case of random ants, it is less of an
issue, as farms have to be good in order to sur-
vive: many communities are almost identical
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Figure 10: Communities detected by random ants. Parameters: depth k = 4, walk length τ = 90
(one hour translated in 20s frames), precision π = 1. The execution took 12 seconds on average, and
found between 80 and 100 communities.

throughout instances; but in some other zones,
sometimes a community is found and sometimes
it stays empty. This may mean that the zone
is not significantly structured, in which case we
need a mathematical concept to measure this.
The visual result for one instance of the random
ants is given in figure 10.

More generally, we need quantitative criteria
for quality, smoothness and stability of the com-
munities we discover. Longitudinal similarity is
proposed by tnetwork for this purpose, as a
value to balance with instantaneous fitness. It
may be a useful tool for further research.

Another insight could be the comparison of
all the algorithms on snapshots: static commu-
nities could be transferred on the stream and
cut into snapshots; dynamic communities could
be reduced by taking for each node the commu-
nity in which it was most times. Then on these
snapshot communities, all the quality functions
such as modularity and conductance could be
applied, as well as comparison to groundtruth.
Unfortunately I had no time to conduct such
extensive tests.

Conclusion

During this internship, I learnt about com-
munity detection in static networks and all the
issues faced by quality functions optimisation.
I discovered algorithms for dynamic communi-
ties on snapshots, and the recent concept of link
stream, that brings fine-grained time informa-
tion in the game of community detection.

After getting my hand in several program-
ming tools specifically designed for networks
and communities, I started observing various
datasets, especially those of Sociopatterns. It
was just a way to start designing algorithms,
without trying to face really big data.

Next, I built a process to test static commu-
nity detection algorithms on aggregated graphs,
and compared some relevant methods of the
literature. Then defining the topochrone of a
link stream, I reused the same algorithms to
obtain dynamic communities, ruling out those
with high time complexity. Lastly, I ran exper-
iments of random walks, with the underlying
goal of rapidity and locality of the computation.
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Results are not breathtaking, but they may be
a basis for further improvement.

In the future, I would like to keep in mind
the following mistakes that lead to big losses
of time. Though I was told about the many
existing programming modules soon enough, it
took me a long time before finally using them
all. In the meantime, I re-coded many functions
that were already – and better – implemented
in them.

It would also have been more efficient to build
a testing infrastructure very soon in the project.
Indeed, I waited to have fully functioning ver-
sions before thinking of how to test and compare
them. While designing the algorithms, I mostly
used intuition to make changes, instead of well-
defined scores. On top of that, I did not save all
the intermediary results, so a lot of redundant
computation had to be done.

To go further with the project, I would try
to improve the random ants algorithm. First,
it needs a better mathematical grounding: the
measure of remarkability has been introduced
here, but there may be more relevant tools avail-
able in information theoretic literature[32].

In order to deal with bigger datasets such as
crypto-currencies, the running time should be
improved. While the complexity for random
ants seems reasonable (k ·m), its factor could be
reduced greatly. Indeed, everything was coded
in Python with little optimisation: this lan-
guage is very convenient to write and read code,
but it is meant to be slower than lower-level
languages like C++. Plus, the extensive use
of dictionaries for heat maps is known to slow
down the process significantly, and pheromones
are erased at every step while some of their in-
formation could be kept.

I truly thank my advisor for . . . his advice,
but more particularly for his humble and honest
approach to research: he was always listening to
ideas and very careful in rejecting them, which
lead to constructive discussions and a nice sense
of belonging.
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