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ABSTRACT
Web platforms receive unprecedented amounts of queries and must
respond in a heartbeat for user comfort. Yet, some crucial algorith-
mic problems are hard to solve on big instances. Part of them, such
as the vertex cover problem, have a 𝑘-approximation algorithm: the
result is guaranteed to be within a factor 𝑘 of the optimum one. But
even then, real-world applications obtain better results with fast
algorithms that have no theoretical guarantees, called heuristics.
There is however no indication on how far these heuristic results
are from optimum. To address this issue, we propose a method to
certify the quality of a heuristic on a given instance. The quality
certification consists in comparing the experimental result to a
bound of the optimum value, obtained through a different heuristic.
We show two ways of obtaining bounds and illustrate them with
famous graph problems: vertex cover for bounds that derive from a
𝑘-approximation algorithm, and independent set for bounds given
by a complementary problem. Tested on 114 real-world networks
with up to three billion edges, our method certifies that the results
of state-of-the-art heuristics for both problems are within 10% of
the optimum value on more than half of the networks. This work
shows that valuable quality certificates can be given for existing
heuristics on specific instances without loosing on scalability. As
it generalises to algorithmic problems with a 𝑘-approximation, it
opens a door for further research and for deployment in real-world
applications.
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1 INTRODUCTION
The curse of applied algorithmics is that many of the most crucial
problems are NP-hard, which generally means that exact algorithms
cannot scale to massive datasets. Online applications such as web
browsers or social platforms are particularly sensitive to this prob-
lem, as they often need to respond with minimum latency to an
unforeseen user query. This leads to a split between exact methods
that push the scalability further and further, and quick methods
that get closer and closer to optimum results. The latter is particu-
larly efficient on real-world instances such as social networks, web
graphs or biological networks, which rarely resemble worst-case
scenarios and allow heuristics to give excellent results [17].

However, while heuristic results can be compared to one another,
it is not possible to measure how far they are from optimal. This
work introduces a method to certify the quality of a result on
a given instance. It combines a heuristic for the initial problem
with another heuristic that gives an instance-specific bound of the
optimal solution. Together, the approximate result and the bound
allow us to compute a more precise approximation quality. We

call this approach a quality certification. We showcase it with two
famous graph problems: minimum vertex cover and maximum
independent set, that have applications in network robustness [31],
wireless communication [33], virus transmission [30] and image
rendering [10].

These two problems are known to be theoretically hard, as they
both figure in the 21 NP-complete problems described in 1972 by
Karp1. They are complementary to each other, since the nodes that
are not in a vertex cover form an independent set. Vertex cover
has a 2-approximation algorithm that consists in finding any maxi-
mal matching, but it is thought that no lower constant ratio can be
achieved [6, 13, 25]. As for independent set, it is hard to approximate
within any constant factor on general graphs. Tighter approxima-
tion ratios exist for graphs that have typical properties of real-world
networks, such as bounded degrees [5, 22], high clustering [8], or a
power-law degree distribution [19]. Reduction and kernelisation
rules, a survey of which is given in [18], diminish the instance
size and can lead to better approximation guarantees [3]. The two
problems have been generalised to weighted graphs [11, 32], dy-
namic networks [1, 4] or partial coverage [24], and analysed in the
quadratic programming [28] and massively parallel settings [20].

In practice, there is a trade-off between speed and guarantee of
quality. On the one hand, the quality ratio of fast heuristics [12] and
2-approximation algorithms for vertex cover is usually way below
2 when compared to an optimum solution [21]. Yet, in the more
interesting case when the optimum is unknown, it is not possible to
measure how accurate the result is. On the other hand, exponential
algorithms for exact solutions can be extremely fast on real-world
networks: the 2019 PACE challenge [15] fostered efforts towards
quick and exact algorithms for vertex cover, and its laureate [23]
solves some graphs of millions of nodes in a few seconds. Still, our
experiments show that it fails to solve the problem in reasonable
time for larger or more complex graphs.

A quality certification bridges this gap: it takes a dataset and
gives both an approximate result and a certificate of its quality,
defined as the ratio between the heuristic result and a bound on the
optimum value. For example, the shortest path between two cities
is lower-bounded by the distance as the crow flies; the certified
quality of a path is then given by the ratio between its length and the
lower-bound. However, such bounds are hard to obtain in general.
The key insight of this paper is that multiple problems of interest
can be bounded empirically, using heuristics to obtain a high lower-
bound – or a low upper-bound – on a specific instance. We propose
two distinct bounding ideas for important graph problems: for
vertex cover, we use the 2-approximation provided by a maximum
matching; for independent set, we reverse the bound of vertex cover,
which is the complementary problem.

1The list contains Node Cover (another name for Vertex Cover), and Set Packing which
is equivalent to Independent Set and shares its approximation properties.
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The rest of the paper is organised as follows. Section 2 presents
the mathematical formalism with notations and definitions of graph
problems. Section 3 details the quality certification method and its
specifics in the case of vertex cover and independent set. Section 4
presents experiments on more than a hundred networks that show
the relevance and scalability of the method, and discusses possible
improvements.

2 BACKGROUND
2.1 Notations
We consider an unweighted undirected simple graph 𝐺 = (𝑉 , 𝐸)
with 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸 | edges. The set of neighbours
of a vertex 𝑢 is denoted 𝑁𝑢 = {𝑣 | {𝑢, 𝑣} ∈ 𝐸}, and its degree is
𝑑𝑢 = |𝑁𝑢 |. For an edge 𝑒 = {𝑢, 𝑣}, we say that 𝑢 and 𝑣 are the
extremities of 𝑒 and that 𝑒 is adjacent to𝑢 and 𝑣 . The adjacent edges
of a subset𝑊 ⊆ 𝑉 are all the edges with at least one extremity in𝑊 .
Two edges are adjacent when they share an extremity. For graph
problems, a solution is optimal (or minimal or maximal) when it
cannot be modified into a better solution by adding or removing an
element, and optimum (or minimum or maximum) if it is as good
as any other solution.

2.2 Vertex Cover
Definition 2.1 (Vertex cover, minimal, minimum). A vertex cover

is a set of nodes 𝐶 that is adjacent to every edge of the graph:
∀{𝑢, 𝑣} ∈ 𝐸, 𝑢 ∈ 𝐶 or 𝑣 ∈ 𝐶 . To simplify, it can be referred to as a
cover. A vertex cover 𝐶 is minimal if removing any node uncovers
an edge: ∀𝑣 ∈ 𝐶, 𝐶 \ {𝑣} is not a cover. It isminimum if it is as small
as any other vertex cover.

Property 1 (Hardness). Knowing if there exists a vertex cover
of a given size is NP-complete. Thus, finding a minimum vertex cover
is NP-hard.

Property 2 (Approximability). It is NP-hard to approximate
the size of a minimum vertex cover by a constant factor lower than 2
under the unique games conjecture [25]. A 2-approximation is given
by any maximal matching as defined further.

2.3 Independent Set
Definition 2.2 (Independent Set, maximal, maximum). An inde-

pendent set is a set 𝑆 of non-adjacent nodes: ∀𝑣 ∈ 𝑉 , {𝑢, 𝑣} ∈ 𝐸, 𝑢 ∉

𝑆 or 𝑣 ∉ 𝑆 . The independent set 𝑆 is maximal if each node that
is not in the set has a neighbour in it: ∀𝑣 ∉ 𝑆, 𝑆 ∪ {𝑣} is not an
independent set. It is maximum if it is as large as any independent
set.

Note that an independent set is the complement of a vertex cover:
consider a set𝐶 ⊆ 𝑉 and 𝑆 = 𝑉 \𝐶 ; if𝐶 is a cover then each edge has
at least one extremity in𝐶 , so at most one in 𝑆 , which is equivalent
to say that 𝑆 is an independent set as none of its nodes are adjacent.

Property 3 (Hardness). Because of the above complementarity,
knowing if there exists an independent set of a given size is NP-
complete and finding a maximum independent set is NP-hard.

Property 4 (Inapproximability). It is NP-hard to approximate
the size of a maximum independent set by a constant factor.

Remark. While finding a minimum vertex cover instantly gives a
maximum independent set, the approximability of the two problems
differs: a 2-approximation for vertex cover is not necessarily a 1

2 -
approximation for independent set. For instance, if |𝑉 | = 100 and
the minimum vertex cover has size 40, a vertex cover of size 80 is
a factor 2 approximation for vertex cover. But the corresponding
independent set is of size 20 for an optimal value of 60, which gives
a factor 1

3 approximation.

2.4 Matching
Definition 2.3 (Matching, maximal, maximum, minimum maxi-

mal). A matching𝑀 is a set of non-adjacent edges: ∀𝑒, 𝑓 ∈ 𝑀, 𝑒 ∩
𝑓 = ∅. A matching 𝑀 is maximal when it is adjacent to all other
edges of the graph: ∀𝑒 ∈ 𝐸, ∃𝑓 ∈ 𝑀, 𝑒 ∩ 𝑓 ≠ ∅. A maximum match-
ing is a maximal matching that is as large as any other matching.
A minimum maximal matching is a maximal matching that is as
small as any other maximal matching.

Property 5 (Hardness). A maximum matching can be found in
polynomial time. However, it is NP-complete to know if there exists
a minimum maximal matching of a given size, and thus NP-hard to
find one.

Definition 2.4 (Cover of a matching). The nodes of any maximal
matching𝑀 form a minimal vertex cover noted 𝐶𝑀 and called the
cover of the matching:

𝐶𝑀 =
⋃

{𝑢,𝑣}∈𝑀
{𝑢} ∪ {𝑣} ⊆ 𝑉

Property 6 (Cover approximation). For any maximal match-
ing𝑀 , the vertex cover 𝐶𝑀 is at most twice as large as any cover. In
particular, a minimum cover 𝐶∗ satisfies 1

2 |𝐶𝑀 | ≤ |𝐶∗ | ≤ |𝐶𝑀 |.

Proof. The edges of𝑀 are non-adjacent. For each of them, 𝐶𝑀

contains 2 nodes, but 𝐶∗ must contain at least 1 node in order to
cover this edge. □

3 QUALITY CERTIFICATION METHOD
This section develops the general method of quality certification
with bounds of the optimum value. It also shows two distinct ways
of obtaining bounds: leveraging a 2-approximation algorithm (for
vertex cover) or using a complementary problem (for independent
set).

3.1 Certification in general
Consider a minimisation problemP that has an unknownminimum
value 𝑝∗. Heuristics can be designed to obtain an approximate value
ℎ ≥ 𝑝∗, with the goal of being as close to 𝑝∗ as possible; we call them
solution-heuristics. Now suppose that another algorithm, that we
call bounding-heuristic, is able to produce a positive lower-bound
𝑏 ≤ 𝑝∗ for this problem. It means that the unknown value 𝑝∗

satisfies 𝑝∗ ∈ [𝑏, ℎ]. This implies that ℎ
𝑝∗ ≤

ℎ
𝑏
which, by definition,

means that the value ℎ is a ℎ
𝑏
-approximation of the optimal value

𝑝∗. The general method is summed up in Algorithm 1.

Proposition 3.1. Ifℎ is an approximate solution to aminimisation
problemP and𝑏 is a lower-bound on theminimum 𝑝∗, thenℎ is within
a factor ℎ

𝑏
of optimum.
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Algorithm 1 – Quality certification for a minimisation problem P
Input: instance of P with unknown minimum 𝑝∗

1: with a solution-heuristic, obtain a solution 𝐻 of value ℎ ≥ 𝑝∗

2: with a bounding-heuristic, obtain a lower-bound 𝑏 ≤ 𝑝∗

3: return solution 𝐻 and certified quality ratio ℎ
𝑏

The goal is then to reduce the interval [𝑏, ℎ] by finding solution-
heuristics with low valueℎ and bounding-heuristics with high value
𝑏. To find good solution-heuristics, it is possible to look into the
existing literature, that provides a variety of methods for the most
common graph problems and their variants.

To find good bounding-heuristics, we propose two approaches
that may generalise to other algorithmic problems. First, we show
how a poor approximation can certify vertex cover: if a solution-
heuristic is proven to be a 𝑘-approximation, its result ℎ satisfies
ℎ ≤ 𝑘 · 𝑝∗, which also provides a lower bound 𝑏 = ℎ

𝑘
. Such an

algorithm is normally designed to output a good, low value ℎ, but
tweaking it to obtain a poor, high value produces a tighter lower-
bound. Second, for problems such as independent set that are hard
to approximate, we show a complementary bounding: it consists in
translating the bounds of a complementary problem into bounds
of the initial problem.

3.2 Certifying vertex cover
This section showcases our quality certification method on the
minimum vertex cover problem. We first show why a 2-approxima-
tion algorithm is both a solution-heuristic and a bounding-heuristic,
using the idea of poor approximations; note that this idea applies to
any problem that has a 𝑘-approximation even if 𝑘 ≠ 2. Second, we
present refined bounding-heuristics and solution-heuristics. This
allows us to formerly define a quality certificate for vertex cover.

Algorithm 2 – Edge-greedy 2-approximation for vertex cover
Input: priority function 𝜂 : 𝐸 → Z

1: start with empty cover: 𝐶𝑀 ← ∅
2: while there are uncovered edges do
3: take edge {𝑢, 𝑣} with highest priority 𝜂 ({𝑢, 𝑣})
4: add 𝑢 and 𝑣 to cover: 𝐶𝑀 ← 𝐶𝑀 ∪ {𝑢} ∪ {𝑣}
5: return 𝐶𝑀

3.2.1 Greedy vertex cover approximations. The minimum vertex
cover problem is NP-complete, but it has a simple 2-approxima-
tion algorithm presented as Algorithm 2. It is a linear-time greedy
algorithm that repeatedly adds both extremities of an uncovered
edge to the cover until all edges are covered. This selection of edges
forms a maximal matching 𝑀 , so per Property 6, the resulting
cover 𝐶𝑀 has at most twice as many nodes as an optimal cover
𝐶∗. Thus, Algorithm 2 serves both as a solution-heuristic and as a
bounding-heuristic, and any cover 𝐶𝑀 obtained with it satisfies

1
2
|𝐶𝑀 | ≤ |𝐶∗ | ≤ |𝐶𝑀 |

In any case, 𝐶𝑀 is a 2-approximation and a typical solution-
heuristic will make it as small as possible to be closer to the mini-
mum cover size. Conversely, the poor approximation strategy con-
sists in making it as large as possible: this maximises the lower-
bound, which implies a larger minimum cover, and hence certifies
a better quality ratio.

Interestingly, Algorithm 2 leads to covers of different sizes de-
pending on the priority order 𝜂 in which edges are considered at
line 3. The intuition is that a small cover 𝐶−

𝑀
may be obtained by

selecting nodes with high degree, because they will cover more
edges. On the other hand, selecting nodes with low degree is likely
to result in a large cover 𝐶+

𝑀
. Finding priority functions for larger

𝐶+
𝑀

and smaller 𝐶−
𝑀

tightens the above equation, which becomes:

1
2
|𝐶+𝑀 | ≤ |𝐶

∗ | ≤ |𝐶−𝑀 |

3.2.2 Bounding-heuristics. To maximise the lower-bound, we need
to obtain a poor approximation from Algorithm 2, or in other words,
a cover 𝐶𝑀 that is as large as possible. As 𝐶𝑀 corresponds to a
matching 𝑀 , we are in fact searching for a maximum matching.
The maximum matching problem can be solved exactly with the
famous blossom algorithm [16] in polynomial time 𝑂 (𝑛2𝑚) for
any graph with 𝑛 nodes and𝑚 edges. Other algorithms lower the
complexity to 𝑂 (

√
𝑛𝑚) [7, 27] and a linear-time approximation

scheme exists [14].
Besides, Algorithm 2 runs in time 𝑂 (𝑚) and can also provide a

large matching, with the low-degree first priority function 𝜂low. At
each step, note 𝑥𝑢 the number of neighbours of node 𝑢 that are not
in the cover yet. Then the priority of edge {𝑢, 𝑣} is

𝜂low ({𝑢, 𝑣}) = −𝑛 ·min(𝑥𝑢 , 𝑥𝑣) −max(𝑥𝑢 , 𝑥𝑣)

In other words, {𝑢, 𝑣} is selected when 𝑢 has the smallest 𝑥𝑢 and 𝑣
has the smallest 𝑥𝑣 among the neighbours of 𝑢. In the left example
of Figure 1, this strategy yields a matching of 6 nodes, which is
maximum.

For the quality certification, we name 𝐶+
𝑀

the largest cover that
we obtain among all bounding-heuristics, and we use it to lower-
bound the minimum size |𝐶∗ | of any vertex cover.

3.2.3 Solution-heuristics. To obtain a small vertex cover, it is possi-
ble to use matchings again. Finding a minimum maximal matching
is NP-hard, but Algorithm 2 can provide a small matching with a
high-degree first priority function 𝜂high. With the definition of 𝑥𝑢
as above, the priority of edge {𝑢, 𝑣} is

𝜂high ({𝑢, 𝑣}) = 𝑛 ·max(𝑥𝑢 , 𝑥𝑣) +min(𝑥𝑢 , 𝑥𝑣)

It means that {𝑢, 𝑣} is selected when 𝑢 has the largest 𝑥𝑢 and 𝑣 has
the largest 𝑥𝑣 among neighbours of 𝑢. In the middle example of
Figure 1, this yields a cover of 4 nodes, which is not optimum but
significantly smaller than with the 𝜂low function.

No constant approximation bound under 2 is known for vertex
cover on general instances. Yet, there exist other heuristics with-
out theoretical approximation guarantees that may result in much
smaller covers in practice. A lot of attention has been given to the
design of such heuristics, and the purpose of this paper is not to im-
prove on existing solutions. A simple method, called node-greedy,
is shown in Algorithm 3: it is similar to Algorithm 2, except that
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Figure 1: Greedy heuristics for vertex cover. The double lines
show the cover obtained on a toy graph with three distinct
heuristics; the numbers indicate the step at which a node has
been selected. Left: edge-greedy with low-degree first 𝜂low
leads to a maximum matching. Middle: edge-greedy with
high-degree first 𝜂high gives a matching with 4 nodes. Right:
node-greedy with high-degree first 𝜈high gives a cover of 3
nodes; it is optimum because the left cover has 6 nodes and
is a 2-approximation.

it only adds node 𝑢 at line 4. The priority function is now defined
over the nodes, and a high-degree first priority is simply:

𝜈high (𝑢) = 𝑥𝑢

In the right example of Figure 1, it yields a cover of 3 nodes, which
we can certify is optimum, as there exists a 2-approximation with
6 nodes. Such greedy algorithms are known to be scalable and to
give small covers [2, 21], and they become highly accurate when
extra reduction rules and local search heuristics are added [12].

Algorithm 3 – Node-greedy heuristic for vertex cover
Input: priority function 𝜈 : 𝑉 → Z

1: start with empty cover: 𝐶𝐻 ← ∅
2: while there are uncovered edges do
3: take node 𝑢 with highest priority 𝜈 (𝑢)
4: add 𝑢 to cover: 𝐶𝐻 ← 𝐶𝐻 ∪ {𝑢}
5: return 𝐶𝐻

For the quality certification, we name 𝐶−
𝐻

the smallest cover
that we obtain among all solution-heuristics, and we use it as an
approximation of the minimum size |𝐶∗ | of any vertex cover. In the
end, we want to tighten the bounds of the resulting inequality:

1
2
|𝐶+𝑀 | ≤ |𝐶

∗ | ≤ |𝐶−𝐻 |

Definition 3.2 (Vertex cover certificate). Given a graph, a vertex
cover certificate is a couple (𝐶−

𝐻
,𝐶+

𝑀
), where 𝐶−

𝐻
is a (small) ver-

tex cover of ℎ nodes and 𝐶+
𝑀

is a vertex cover of 2𝑏 nodes that
corresponds to a maximal matching of 𝑏 edges. 𝐶−

𝐻
is certified to

be within a factor ℎ
𝑏
of the minimum cover size and the ratio ℎ

𝑏
is

called the certified quality.

Note that this strategy can be interpreted as a primal-dual op-
timisation, as maximum matching is the dual linear program of
vertex cover.

3.3 Certifying independent set
The case of independent sets is different because there is no known
constant-factor approximation algorithm. It is thus necessary to
use another method for the bounding. Besides, it is a maximisation
problem, as we want to find as many non-adjacent nodes as possi-
ble; its approximation ratio will therefore be denoted by a factor
between 0 and 1.

3.3.1 Solution-heuristics. Specific heuristics exist to obtain quick
approximate solutions for independent set, in particular some that
have been adapted from exact branch-and-bound algorithms [26].

Moreover, any solution-heuristic for vertex cover translates into
a solution-heuristic for independent set, since they are complemen-
tary problems as noted in Section 2. More precisely, for any vertex
cover𝐶 , its complement 𝑆 = 𝑉 \𝐶 is an independent set. For optimal
values, the size 𝑠∗ of a maximum independent set and the size 𝑐∗
of a minimum vertex cover satisfy 𝑠∗ + 𝑐∗ = 𝑛. Take the smallest
vertex cover obtained by solution-heuristics; if it has ℎ nodes, then
its complement is an independent set of 𝑠 = 𝑛 − ℎ nodes. Besides,
the difference between ℎ and 𝑐∗ is equal to the difference between
𝑠 and 𝑠∗.

3.3.2 Bounding-heuristics. Independent set is a maximisation prob-
lem so the quality certification requires an upper-bound. To obtain
one, we transform a lower-bound of minimum vertex cover: sup-
pose that a bounding-heuristic for vertex cover produces a bound
𝑏 ≤ 𝑐∗, then we have 𝑛 − 𝑏 ≥ 𝑛 − 𝑐∗ = 𝑠∗. In the end, 𝑛 − 𝑏 is an
upper-bound for 𝑠∗.

Definition 3.3 (Independent set certificate). Given a graph, an
independent set certificate is a couple (𝑆+,𝐶+

𝑀
), where 𝑆+ is a (large)

independent set of 𝑠 nodes and 𝐶+
𝑀

is a vertex cover of 2𝑏 nodes
that corresponds to a maximal matching of 𝑏 edges. 𝑆+ is certified
to be within a factor 𝑠

𝑛−𝑏 of the maximum independent set size and
the ratio 𝑠

𝑛−𝑏 is called the certified quality.

Note that the certified quality 𝑠
𝑛−𝑏 depends on the number of

nodes 𝑛. It can thus be arbitrarily low, which is compatible with the
fact that independent set does not have constant-factor polynomial
approximations.

4 EXPERIMENTS
4.1 Experimental setup

Datasets. To measure the performance of the quality certifica-
tion method, we apply it on a set of social networks (blogs, twitter,
facebook, etc) and web graphs (wikipedia pages, webpages of a
linguistic region, top-level domain, etc). For comparison purposes,
we use all the undirected graphs of the Network Repository [29]
anaysed in the experiments of [12], including other types of real-
world networks (biological, citation, infrastructure). To test the
limits of the different algorithms in the case of large online plat-
forms, we add 10 networks of themassive category of [29], and two
networks of the Webgraph [9]. All 114 networks are reported in
Appendix A with their number of nodes and edges, the exact or
approximate covers found by experiments and the corresponding
quality certificates. We also report the duration of the certification
to show its scalability.
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Software and hardware. To emulate an online-application setting
where users cannot tolerate a long latency, each execution is limited
to one hour for the networks used in [12] and six hours to the 12
added networks. We release an open-source c++ implementation of
our code for the quality certification of vertex cover and indepen-
dent set 2. We run all the programs on a sgi ub2000 intel xeon
e5-4650L @2.6 GHz of memory running linux suse 12.3 with
128GB of memory.

4.2 Algorithms
4.2.1 Solution-heuristics for vertex cover and independent set. The
literature presents specific methods and implementations for inde-
pendent set [26], but most techniques have now been applied for
vertex cover as well [18, 23]. Therefore, we only use the heuristics
for vertex cover as their result directly translates into a result for
independent set.

We try different methods to find a balance between cover quality
and execution time. First, we allocate 1 hour (6 hours for larger
networks) to the exact kernelisation algorithm presented in [23];
we obtain 76 solved networks where the optimum is known (several
of which have millions of nodes), and 38 unsolved ones. For all the
networks, we obtain fast approximate results with the state-of-the-
art heuristic FastVC presented in [12]; on top of the one-hour time
limit, we stop the execution when the best cover stops improving
over𝑚 iterations.

We also use the node-greedy Algorithm 3 with high-degree first,
as described on the right of Figure 1. To ensure that the resulting
cover is minimal, we remove the nodes that have all of their neigh-
bours in the cover. This algorithm is not a 2-approximation but it
gives better results than the edge-greedy heuristic on all instances.
It even yields smaller covers than FastVC on 18 networks. The ex-
perimental cover size taken as a reference in the experiments is the
smallest between node-greedy and FastVC results.

4.2.2 For maximum matching. To find a lower-bound on the mini-
mum size of a vertex cover, we need a poor cover approximation,
which means a matching of high cardinality. An exact maximum
matching can be found with the blossom algorithm. We use the
implementation of the boost3 c++ library, and it finishes in less
than an hour on all but 11 networks. For faster results, we use
the edge-greedy Algorithm 2 as an approximation, with the low-
degree priority function shown on the left of Figure 1. The resulting
matching is within 2% of maximum on all the instances where the
maximum is known.

Altogether, the quality certification method scales on large real-
world datasets and can use more precise methods on smaller in-
stances. Appendix A presents the execution times that lead to the
results of the experiments.

4.3 Quality certification in practice
The main contribution of this work is to provide a scalable way to
certify the quality of a vertex cover that is not known to be optimal.
On each graph, we are therefore interested in the gap between the
best cover obtained with a solution-heuristic (called𝐶−

𝐻
in Section 3)

2http://github.com/ (hidden for anonymity)
3https://boost.org/doc/libs/1_80_0/libs/graph/doc/maximum_matching.html
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Figure 2: Certified quality for vertex cover and independent
set. Left: all 114 networks. Right: 38 unsolved networks (exact
solution unknown). Networks are ranked by their certified
quality for vertex cover, which is correlated but not necessar-
ily symmetric to the quality for independent set. Horizontal
grids indicate 10% and 50% thresholds and vertical grids cut
networks in four even groups. Observe that half of the net-
works obtain a certified quality within the 10% lines: the
bounding-heuristic certifies that the smallest cover found
by solution-heuristics is at most 10% larger than minimum,
and that the corresponding independent set is at most 10%
smaller than maximum.

and the highest bound obtained with a bounding-heuristic (called
𝐶+
𝑀
). More specifically, the certified qualities 𝛼 for vertex cover and

𝛽 for independent set are given by

𝛼 =
|𝐶−

𝐻
|

1
2 |𝐶+𝑀 |

𝛽 =
𝑛 − |𝐶−

𝐻
|

𝑛 − 1
2 |𝐶+𝑀 |

Recall that these two values are correlated, but while the vertex
cover certificate is always between one and two, the certificate for
independent set depends on 𝑛 and is between zero and one.

We define the following arbitrary thresholds: a certified qual-
ity for vertex is good when below 1.1, poor when above 1.5, and
medium otherwise. Similarly for independent set, it is good above
0.9, poor under 0.5, and medium otherwise.

Figure 2 shows that one half of the networks have a good certified
quality for vertex cover: the solution-heuristics found a cover that
is less than 10% larger than a minimum cover. The quality is even
under 1.01 for 30 networks, and exact for 9 of them: a solution-
heuristic found a cover 𝐶𝐻 of ℎ nodes, and a bounding-heuristic
found a cover𝐶𝑀 of 2ℎ nodes, certifying thatℎ is the optimum value.
Among unsolved networks, 14 have a good quality for independent
set and 22 have a medium or good quality for vertex cover.

Altogether, this indicates that existing heuristics perform well,
and that we are able to certify it using a maximal matching as
a bounding-heuristics. However, 25 networks have a poor qual-
ity for both vertex cover and independent set. To understand this

http://github.com/
https://boost.org/doc/libs/1_80_0/libs/graph/doc/maximum_matching.html
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Figure 3: Size of the smallest cover found by solution-
heuristics and of the largest cover found by bounding-
heuristics, relative to known minimum cover size. Only
solved networks are shown, and they are ranked by their
certified quality. The cover of the solution-heuristic is always
less than 1% above optimum, which shows that heuristics
perform extremely well on all of these instances. The cover
of the bounding-heuristic (obtained from a maximal match-
ing) is almost twice as large as optimum in half of the cases.
But on the other half, it is much smaller; this fully explains
the poor approximation certificate for these networks.

unsatisfactory behaviour, Section 4.4 will check whether the cer-
tificate is poor because of the solution-heuristics or because of the
bounding-heuristics.

Besides, we observe that the certificate 𝛽 for independent set
is precisely linked with the certificate for vertex cover 𝛼 , almost
following the relation 𝛼 + 𝛽 ≃ 2. Yet, this equation is only valid
when both 𝛽 and 𝛼 equal 1 (when an optimal cover has been found)
or when the cover 𝐶𝑀 of the maximum matching has 𝑛 nodes. The
correlation of the two curves indicates that we are close to one of
these situations; this will be further investigated in Section 4.5.

4.4 Finding the cause for poor certified quality
As reported in Figure 2, the quality certification method gives poor
results for 25 datasets, and this can have two causes. First, the
solution-heuristics may find covers that are much larger than the
optimum 𝑐∗. Second, the cover of a maximal matching (found by
a bounding-heuristic) may be much smaller than 2𝑐∗. To measure
this, we consider the 76 solved networks, for which an optimum
cover has been found in less than an hour.

Looking at the solution-heuristic cover size in Figure 3, we ob-
serve that it is always very close to optimum regardless of the
certified quality. In fact, the best heuristic finds a cover that is less
than 1% larger than optimum on all solved networks. This means
that the medium and poor qualities obtained on half of the net-
works are mainly due to a poor bound. We indeed see in the figure
that bounding-heuristic size is almost twice the optimum size for
half of the networks, but it drops for those of poor certified qual-
ity. On the last 10 networks, the cover of the matching found by
bounding-heuristics is barely larger than the smallest cover found

by solution-heuristics: this gives no indication at all on the quality
of this cover.

The solution-heuristics that find small covers are not responsible
for the poor certified qualities. It is rather the bounding-heuristics
that fail because they find matchings that are too small. Three
possibilities can explain this, and the experiment of Section 4.5 will
find the culprit.

4.5 Finding the cause for poor bounds
Previous experiments show that bounding-heuristics are responsi-
ble for the medium or poor quality certifications obtained on half
of the networks. Indeed, the cover of the matching that they find
has much less than 2𝑐∗ nodes, which can have three causes.

First, the edge-greedy Algorithm 2 may output a cover that
corresponds to a matching that is far from maximum; this is not
the case, because the we were able to obtain an exact maximum
matching on all the instances that have a poor certified quality
(see the table in Appendix A). Second, the cover of the maximum
matching may have much less than 𝑛 nodes, which happens for
example with isolated triangles, where matching two nodes leaves
one alone. Third, the minimum cover itself contains almost 𝑛 nodes,
which makes it impossible to find a cover with 2𝑛 nodes.

Looking back at the relation 𝛼 + 𝛽 ≃ 2 mentioned in Section 4.3
points to the third option. Rewriting it as |𝐶

−
𝐻
|

1
2 |𝐶+𝑀 |

+ 𝑛−|𝐶−
𝐻
|

𝑛− 1
2 |𝐶+𝑀 |

= 2, we

have two solutions: either |𝐶+
𝑀
| = 2|𝐶−

𝐻
|, which certifies that 𝐶−

𝐻
is

a minimum vertex cover; or |𝐶+
𝑀
| = 𝑛, which is the third option to

explain the poor qualities.
To attest this, let us take the 57 networks that have medium

or poor certified cover qualities (above 1.1) and compare 𝑛 to the
largest cover obtained by bounding-heuristics. Figure 4 shows that
in most cases, the largest cover obtained from a maximal matching
contains almost 𝑛 nodes, represented by the darkest area. Half of
the matchings contain more of 90% of the nodes; only 12 are not in
the 80%, and their bounding-heuristic size is more than 1.5 larger
than the solution-heuristic, which means that their certified quality
is medium.

Altogether, this result means that the quality certification only
fails when the minimum cover of a graph contains almost all the
nodes, because it loosens the bound obtained with a poor 2-approx-
imation. Improving the certified quality on these networks would
require a more advanced bounding strategy, using for instance the
3
2 -approximation presented in [3].

CONCLUSION
This work proposes a practical method to certify the quality of the
result of a heuristic on a given instance. It then illustrates it on the
closely related problems of vertex cover and independent set. For
the former, our method certifies quality ratios that are way under
the theoretical factor 2, even on networks with billions of edges
where obtaining an exact solution is costly or unfeasible. For the
latter, the resulting certificates are even more remarkable as the
independent set problem does not have constant-factor approxi-
mations in general. However, the method obtains poor results on
networks where the minimum cover contains most of the nodes,
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Figure 4: Size of the largest cover 𝐶+
𝑀

found by bounding-
heuristics relative to smallest cover 𝐶−

𝐻
found by solution-

heuristic, compared to 𝑛. Solved (top) and unsolved (bottom)
networks are shown if they have a medium or poor certified
cover quality (above 1.1). Bounding-heuristic size and 𝑛 are
divided by the smallest size |𝐶−

𝐻
|. A large cover cannot contain

more than 𝑛 nodes, which is represented by the dark area;
90% and 80% zones show how far from 𝑛 a given bounding-
heuristic is. Observe that most of them contain more than
90% of the nodes, which means that the poor quality is due to
|𝐶−

𝐻
| being close to 𝑛. This is even more striking for unsolved

networks, for 20 of which 𝐶+
𝑀

contains more than 99% of the
nodes.

which invites for more research on the types of graph structures
that influence the quality certification.

We hope that this work is an incentive to design certificates to
go along with other heuristics. Further research will try and extend
this method to other algorithmic problems. Indeed, the quality
certification applies on all problems that have a constant-factor
approximation – like vertex cover – or that can be expressed as a
transformation of problems that have one – like independent set.
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Table 1: Results of the experiments on web and social networks

minimum VC heuristic results certified quality time
name nodes edges vertex cover solution bounding VC IS (seconds)

rt-retweet 97 117 32 32 64 1 1 <0.1
rt-twitter-copen 762 1,029 237 237 466 1.017 0.992 <0.1
rt-retweet-crawl 1,112,703 2,278,852 81,040 81,048 162,074 <1.0005 >0.9995 19.1

soc-karate 35 78 14 14 26 1.077 0.955 <0.1
soc-dolphins 63 159 34 34 60 1.133 0.879 <0.1
soc-wiki-Vote 890 2,914 406 406 802 1.012 0.990 <0.1
soc-epinions 26,589 100,120 9,757 9,757 19,136 1.020 0.989 0.58

soc-brightkite 56,740 212,945 21,190 21,190 41,600 1.019 0.989 1.62
soc-douban 154,909 327,162 8,685 8,685 17,370 1 1 1.24
soc-slashdot 70,069 358,647 22,373 22,373 44,332 1.009 0.996 2.17

soc-twitter-follows 404,720 713,319 2,323 2,323 4,646 1 1 3.04
soc-gowalla 196,592 950,327 84,222 84,226 162,808 1.035 0.976 28.4
soc-delicious 536,109 1,365,961 85,298 85,717 170,572 1.005 0.999 22.6
soc-youtube 495,958 1,936,748 146,376 146,376 289,674 1.011 0.996 99.0

soc-BlogCatalog 88,785 2,093,195 20,752 20,752 41,322 1.004 0.999 13.5
soc-LiveMocha 104,104 2,193,083 43,427 43,427 86,754 1.001 0.999 34.5

soc-buzznet 101,164 2,763,066 30,613 30,626 60,670 1.010 0.996 33.9
soc-youtube-snap 1,134,891 2,987,624 276,945 276,945 548,662 1.010 0.997 196

soc-flickr 513,970 3,190,452 153,271 153,272 298,654 1.026 0.989 95.9
soc-FourSquare 639,015 3,214,986 90,108 90,109 179,644 1.003 0.999 54.9

soc-lastfm 1,191,806 4,519,330 78,688 78,688 157,336 <1.0005 >0.9995 32.8
soc-digg 770,800 5,907,132 103,234 103,245 205,820 1.003 0.999 160

soc-flixster 2,523,387 7,918,801 96,317 96,317 192,596 <1.0005 >0.9995 45.7
soc-pokec 1,632,804 22,301,964 † 843,440 1,562,088 1.080 0.927 3306

soc-livejournal 4,033,138 27,933,062 1,868,903 1,869,045 3,551,580 † 1.053 0.959 1220
soc-orkut 2,997,167 106,349,209 † 2,171,318 2,971,206 1.462 0.546 2808

socfb-CMU 6,622 249,959 † 4,989 6,602 1.511 0.492 1.08
socfb-MIT 6,403 251,230 † 4,658 6,374 1.462 0.543 0.86

socfb-UCSB37 14,918 482,215 † 11,266 14,900 1.512 0.489 2.32
socfb-Duke14 9,886 506,437 † 7,686 9,864 1.558 0.444 1.83

socfb-Stanford3 11,587 568,309 † 8,518 11,530 1.478 0.527 2.09
socfb-UConn 17,207 604,867 † 13,234 17,186 1.540 0.461 2.22
socfb-UCLA 20,454 747,604 † 15,229 20,420 1.492 0.510 3.67

socfb-OR 63,393 816,886 † 36,556 61,886 1.181 0.827 5.90
socfb-Wisconsin87 23,832 835,946 † 18,398 23,810 1.545 0.456 3.34
socfb-Berkeley13 22,901 852,419 † 17,219 22,852 1.507 0.495 4.38

socfb-UIllinois 30,796 1,264,421 † 24,103 30,760 1.567 0.434 6.95
socfb-Indiana 29,733 1,305,757 † 23,323 29,706 1.570 0.431 6.99
socfb-Penn94 41,537 1,362,220 † 31,176 41,490 1.503 0.498 13.2

socfb-UF 35,112 1,465,654 † 27,316 35,092 1.557 0.444 13.9
socfb-Texas84 36,365 1,590,651 † 28,186 36,340 1.551 0.450 11.2
socfb-B-anon 2,937,613 20,959,854 303,048 303,049 605,978 <1.0005 >0.9995 918
socfb-A-anon 3,097,166 23,667,394 375,230 375,233 750,174 <1.0005 >0.9995 2721
socfb-uci-uni 58,790,783 92,208,195 866,766 866,768 1,733,530 <1.0005 >0.9995 1125
web-polblogs 644 2,280 244 244 480 1.017 0.990 <0.1
web-google 1,300 2,773 498 498 812 1.227 0.897 <0.1

web-edu 3,032 6,474 1,451 1,451 2,820 1.029 0.975 <0.1
web-BerkStan 12,306 19,500 5,384 5,390 9,432 1.143 0.911 0.19

web-webbase-2001 16,063 25,593 2,651 2,652 4,654 1.140 0.976 0.11
web-spam 4,768 37,375 2,297 2,298 4,264 1.078 0.937 0.13

web-indochina-2004 11,359 47,606 7,300 7,300 10,244 1.425 0.651 0.27
web-sk-2005 121,423 334,419 58,173 58,181 88,130 1.320 0.818 4.45

web-arabic-2005 163,599 1,747,269 114,420 114,430 140,326 1.631 0.526 17.9
web-wikipedia2009 1,864,434 4,507,315 † 648,333 1,261,130 1.028 0.986 3006

web-it-2004 509,339 7,178,413 414,507 414,676 455,018 1.823 0.336 59.8
web-uk-2005 129,633 11,744,049 127,774 127,774 129,180 1.978 0.029 74.2

web-indochina-2004-all 7,414,866 150,984,819 † 2,720,341 4,405,674 † 1.235 0.901 1305
+web-indochina-2004-all 7,414,866 150,984,819 † 2,720,245 4,405,674 † 1.235 0.901 3756

+soc-sinaweibo 58,655,850 261,321,033 † 223,000 446,000 1 1 3963
+web-uk-2002-all 18,520,344 261,787,258 † 6,630,435 11,244,516 † 1.179 0.922 1429
+soc-twitter-2010 21,297,773 265,025,545 † 7,646,447 14,825,238 † 1.032 0.983 1545
+web-uk-2005-all 39,459,924 783,027,125 † 15,952,499 25,384,548 † 1.257 0.878 327

+web-webbase-2001-all 118,142,144 854,809,761 † 38,892,190 67,042,152 † 1.160 0.937 503
+web-it-2004-all 41,291,319 1,027,474,947 † 15,986,216 26,183,814 † 1.221 0.897 392
+soc-friendster 65,608,367 1,806,067,135 † 29,609,968 56,158,240 † 1.055 0.959 2456

+web-sk-2005-all 50,636,152 1,810,063,330 † 20,352,253 32,764,424 † 1.242 0.884 661
+webgraph-twitter-2010 41,652,230 1,202,513,046 † 13,066,103 24,884,176 † 1.050 0.979 1326
+webgraph-uk-2007-05 105,896,435 3,301,876,564 † 39,386,701 64,299,206 † 1.225 0.902 1663
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Table 2: Results of the experiments on other real-world networks

minimum VC heuristic results certified quality time
name nodes edges vertex cover solution bounding VC IS (seconds)

bio-diseasome 517 1,188 285 285 458 1.245 0.806 <0.1
bio-yeast 1,459 1,948 456 456 896 1.018 0.992 <0.1

bio-celegans 454 2,025 249 249 452 1.102 0.899 <0.1
bio-dmela 7,394 25,569 2,630 2,630 5,260 1 1 <0.1

ca-netscience 380 914 214 214 354 1.209 0.818 <0.1
ca-CSphd 1,883 1,740 550 550 1,100 1 1 <0.1

ca-Erdos992 6,101 7,515 461 461 922 1 1 <0.1
ca-GrQc 4,159 13,422 2,208 2,208 3,732 1.183 0.851 <0.1

ca-CondMat 21,364 91,286 12,480 12,480 20,372 1.225 0.795 0.50
ca-HepPh 11,205 117,619 6,555 6,555 10,570 1.240 0.785 0.54

ca-AstroPh 17,904 196,972 11,483 11,483 17,540 1.309 0.703 1.00
ca-dblp-2010 226,414 716,460 121,969 121,969 199,818 1.221 0.826 19.7
ca-citeseer 227,321 814,134 129,193 129,193 204,536 1.263 0.785 19.8

ca-MathSciNet 332,690 820,644 139,951 139,951 258,144 1.084 0.947 51.0
ca-dblp-2012 317,081 1,049,866 164,949 164,949 276,148 1.195 0.850 57.5

ca-coauthors-dblp 540,487 15,245,729 472,179 472,179 540,080 1.749 0.253 134
ca-hollywood-2009 1,069,127 56,306,653 864,052 864,052 1,068,158 1.618 0.383 792

ia-enron-only 144 623 86 86 140 1.229 0.784 <0.1
ia-infect-hyper 114 2,196 90 90 112 1.607 0.414 <0.1
ia-infect-dublin 411 2,765 293 294 410 1.434 0.568 <0.1
ia-email-univ 1,134 5,451 594 594 1,096 1.084 0.922 <0.1

ia-fb-messages 1,267 6,451 578 578 1,148 1.007 0.994 <0.1
ia-reality 6,810 7,680 81 81 162 1 1 <0.1

ia-email-EU 32,431 54,397 820 820 1,638 1.001 >0.9995 0.17
ia-enron-large 33,697 180,811 12,781 12,781 21,682 1.179 0.915 1.04
ia-wiki-Talk 92,118 360,767 17,288 17,288 34,526 1.001 >0.9995 1.95
inf-power 6,595 6,548 2,186 2,187 4,360 1.003 0.998 <0.1

inf-roadNet-PA 1,087,563 1,541,514 † 555,276 1,057,094 1.051 0.952 1171
inf-roadNet-CA 1,957,028 2,760,388 † 1,001,358 1,902,836 1.052 0.950 3763

inf-road-usa 23,947,348 28,854,312 † 11,972,844 22,255,674 † 1.076 0.934 1255
rec-amazon 91,814 125,704 47,605 47,606 86,290 1.103 0.908 4.19
sc-nasasrb 54,871 1,311,227 † 51,251 54,870 1.868 0.132 19.3
sc-shipsec1 140,386 1,707,759 † 117,357 140,382 1.672 0.328 41.1
sc-shipsec5 179,105 2,200,076 † 147,161 179,094 1.643 0.357 52.0
sc-pkustk11 87,805 2,565,054 83,911 83,911 87,804 1.911 0.089 15.9
sc-pkustk13 94,894 3,260,967 † 89,228 94,892 1.881 0.119 33.0

sc-pwtk 217,892 5,653,221 † 207,721 217,890 1.907 0.093 89.7
sc-msdoor 415,864 9,378,650 381,558 381,558 404,784 1.885 0.161 122
sc-ldoor 952,204 20,770,807 856,754 856,758 909,536 1.884 0.192 439

tech-routers-rf 2,114 6,632 795 795 1,566 1.015 0.991 <0.1
tech-as-caida2007 26,476 53,381 3,683 3,683 7,360 1.001 >0.9995 0.20

tech-WHOIS 7,477 56,943 2,284 2,284 4,392 1.040 0.983 0.20
tech-internet-as 40,165 85,123 5,700 5,700 11,370 1.003 >0.9995 0.37

tech-p2p-gnutella 62,562 147,878 15,682 15,682 31,364 1 1 0.65
tech-RL-caida 190,915 607,610 74,593 74,942 146,626 1.022 0.986 24.5
tech-as-skitter 1,694,617 11,094,209 525,022 527,198 1,024,996 1.029 0.988 3154

+tech-p2p 5,792,297 147,829,887 † 301,718 603,432 <1.0005 >0.9995 5091
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